Mass Production of Silicon MOS-SETs: Can We Live with Nano-Devices' Variability?

نویسندگان

  • Xavier Jehl
  • B. Roche
  • Marc Sanquer
  • B. Voisin
  • Romain Wacquez
  • Veeresh Deshpande
  • Bernard Previtali
  • Maud Vinet
  • J. Verduijn
  • G. C. Tettamanzi
  • S. Rogge
  • D. Kotekar-Patil
  • M. Ruoff
  • D. Kern
  • D. A. Wharam
  • M. Belli
  • Enrico Prati
  • Marco Fanciulli
چکیده

It is very important to study variability of nanodevices because the inability to produce large amounts of identical nanostructures is eventually a bottleneck for any application. In fact variability is already a major concern for CMOS circuits. In this work we report on the variability of dozens of silicon single-electron transistors (SETs). At room temperature their variability is compared with the variability of the most advanced CMOS FET i.e. the ultra thin Silicon-on-Insulator Multiple gate FET (UT SOI MuGFET). We found that dopants diffused from Source –Drain into the edge of the undoped channel are the main source of variability. This emphasizes the role of extrinsic factors like the contact junctions for variability of any nanodevice. © Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping

As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a n...

متن کامل

Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering

In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...

متن کامل

Nano Organic Transistor with SiO2 / Poly VinylPyrrolidone Dielectric

In this paper, the morphology, roughness and nano structural properties of SiO2/Poly Vinyl Pyrrolidone  synthesized with sol gel method,  characterized by using scanning electron microscopy, atomic force microscopy and GPS132A techniques.The main material taken from oxide silicon with weight percentage of 20, 40, 60, 80 and from poly vinyl pyrrolidone with percentages of 80, 60, 40, 20 is synth...

متن کامل

طراحی و مدل سازی مبدل های آنالوگ به دیجیتال سازگار با دمای اتاق به کمک نانوترانزیستورهای تک الکترونی با جزیره کوانتوم نقطه ای نیمه هادی

In this article, the design and modeling details of room-temperature analog-to-digital converter (ADC) based on silicon quantum-dot (QD) single-electron transistors (SETs) is presented. In contrast to the conventional metal quantum dots, the use of silicon QDs in the scales of few nano-meters enhances the device operation and makes stable the Coulomb blockade and Coulomb oscillation regimes at ...

متن کامل

Deconvoluted Si 2p Photoelectron Spectra of Ultra thin SiO2 film with FitXPS method

The main impetus for our research is provided by the growing interest worldwide in ultra thin silicon dioxide on silicon based nano devices. The obvious need for better knowledge in the ultra thin gate silicon dioxides, is motivated both by interests in fundamental research and phenomenology as well as by interests in possible applications, which can be found with better fitting of experimental...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011